Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365236

RESUMO

Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.


Assuntos
Vírus , Vírus/genética , Metagenômica/métodos , Ecologia , Filogenia , Genoma Viral
2.
PLoS Biol ; 21(6): e3002157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319262

RESUMO

Numerous, diverse plant viruses encode movement proteins (MPs) that aid the virus movement through plasmodesmata, the plant intercellular channels. MPs are essential for virus spread and propagation in distal tissues, and several unrelated MPs have been identified. The 30K superfamily of MPs (named after the molecular mass of tobacco mosaic virus MP, the classical model of plant virology) is the largest and most diverse MP variety, represented in 16 virus families, but its evolutionary origin remained obscure. Here, we show that the core structural domain of the 30K MPs is homologous to the jelly-roll domain of the capsid proteins (CPs) of small RNA and DNA viruses, in particular, those infecting plants. The closest similarity was observed between the 30K MPs and the CPs of the viruses in the families Bromoviridae and Geminiviridae. We hypothesize that the MPs evolved via duplication or horizontal acquisition of the CP gene in a virus that infected an ancestor of vascular plants, followed by neofunctionalization of one of the paralogous CPs, potentially through the acquisition of unique N- and C-terminal regions. During the subsequent coevolution of viruses with diversifying vascular plants, the 30K MP genes underwent explosive horizontal spread among emergent RNA and DNA viruses, likely permitting viruses of insects and fungi that coinfected plants to expand their host ranges, molding the contemporary plant virome.


Assuntos
Vírus de Plantas , Vírus do Mosaico do Tabaco , Proteínas do Capsídeo/genética , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plantas/genética , RNA , /genética
3.
Nat Microbiol ; 8(6): 1008-1017, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127702

RESUMO

All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.


Assuntos
Eucariotos , Vírus , Células Eucarióticas , Viroma , Filogenia , Archaea/genética , Bactérias/genética , Vírus/genética
4.
Cell ; 186(3): 646-661.e4, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36696902

RESUMO

Viroids and viroid-like covalently closed circular (ccc) RNAs are minimal replicators that typically encode no proteins and hijack cellular enzymes for replication. The extent and diversity of viroid-like agents are poorly understood. We developed a computational pipeline to identify viroid-like cccRNAs and applied it to 5,131 metatranscriptomes and 1,344 plant transcriptomes. The search yielded 11,378 viroid-like cccRNAs spanning 4,409 species-level clusters, a 5-fold increase compared to the previously identified viroid-like elements. Within this diverse collection, we discovered numerous putative viroids, satellite RNAs, retrozymes, and ribozy-like viruses. Diverse ribozyme combinations and unusual ribozymes within the cccRNAs were identified. Self-cleaving ribozymes were identified in ambiviruses, some mito-like viruses and capsid-encoding satellite virus-like cccRNAs. The broad presence of viroid-like cccRNAs in diverse transcriptomes and ecosystems implies that their host range is far broader than currently known, and matches to CRISPR spacers suggest that some cccRNAs replicate in prokaryotes.


Assuntos
RNA Catalítico , Viroides , RNA Circular/metabolismo , Viroides/genética , Viroides/metabolismo , RNA Catalítico/genética , RNA Viral/genética , RNA Viral/metabolismo , Ecossistema , Doenças das Plantas
5.
Environ Microbiol ; 25(1): 40-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097140

RESUMO

Viruses are considered to be the most abundant biological entities on earth. They also display striking genetic diversity as emphatically demonstrated by the recent advances of metagenomics and metatranscriptomics. But what are the limits of this diversity, that is, how many virus species in the earth virome? By combining the available estimates of the number of prokaryote species with those of the virome size, we obtain back-of-the-envelope estimates of the total number of distinct virus species, which come out astronomically large, from about 107 to about 109 . The route of virus origins apparently involved non-viral replicators capturing and exapting various cellular proteins to become virus capsid subunits. How many times in the history of life has this happened? In other words, how many realms of viruses, the highest rank taxa that are supposed to be monophyletic, comprise the global virome? We argue that viruses emerged on a number (even if far from astronomical) independent occasions, so the number of realms will considerably increase from the current 6, by splitting some of the current realms, giving the realm status to some of the currently unclassified groups of viruses and discovery of new distinct groups.


Assuntos
Viroma , Vírus , Filogenia , Vírus/genética , Metagenômica , Vírion , Genoma Viral
6.
Cell ; 185(21): 4023-4037.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174579

RESUMO

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.


Assuntos
Bacteriófagos , Vírus de RNA , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Filogenia , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Viroma
7.
Cell Host Microbe ; 30(7): 917-929, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35834963

RESUMO

Viruses are obligate intracellular parasites. Despite their dependence on host cells, viruses are evolutionarily autonomous, with their own genomes and evolutionary trajectories locked in arms races with the hosts. Here, we discuss a simple functional logic to explain virus macroevolution that appears to define the course of virus evolution. A small core of virus hallmark genes that are responsible for genome replication apparently descended from primordial replicators, whereas most virus genes, starting with those encoding capsid proteins, were subsequently acquired from hosts. The oldest of these acquisitions antedate the last universal cellular ancestor (LUCA). Host gene capture followed two major routes: convergent recruitment of genes with functions that directly benefit virus reproduction and exaptation when host proteins are repurposed for unique virus functions. These forms of host protein recruitment by viruses result in different levels of similarity between virus and host homologs, with the exapted ones often changing beyond easy recognition.


Assuntos
Vírus , Evolução Biológica , Proteínas do Capsídeo/genética , Evolução Molecular , Genes Virais , Lógica , Fenômenos Fisiológicos Virais , Vírus/genética , Vírus/metabolismo
8.
Microbiol Mol Biol Rev ; 85(4): e0019320, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34468181

RESUMO

Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.


Assuntos
Vírus , Evolução Biológica , DNA , Vírus de DNA/genética , Plasmídeos , Vírus/genética
9.
J Virol ; 95(15): e0067321, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011550

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) has recently adopted a comprehensive, hierarchical system of virus taxa. The highest ranks in this hierarchy are realms, each of which is considered monophyletic but apparently originated independently of other realms. Here, we announce the creation of a new realm, Adnaviria, which unifies archaeal filamentous viruses with linear A-form double-stranded DNA genomes and characteristic major capsid proteins unrelated to those encoded by other known viruses.


Assuntos
Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de DNA/classificação , Vírus de DNA/genética , Archaea/virologia , Proteínas do Capsídeo/genética , DNA Viral/genética , Genoma Viral/genética , Filogenia , Replicação Viral
10.
Curr Opin Virol ; 47: 86-94, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33652230

RESUMO

Viruses are ubiquitous, essential components of any ecosystem, and of multicellular organism holobionts. Numerous viruses cause acute infection, killing the host or being cleared by immune system. In many other cases, viruses coexist with the host as symbionts, either temporarily or for the duration of the host's life. Apparently, virus-host relationships span the entire range from aggressive parasitism to mutualism. Here we attempt to delineate the healthy human virome, that is, the entirety of viruses that are present in a healthy human body. The bulk of the healthy virome consists of bacteriophages infecting bacteria in the intestine and other locations. However, a variety of viruses, such as anelloviruses and herpesviruses, and the numerous endogenous retroviruses, persist by replicating in human cells, and these are our primary focus. Crucially, the boundary between symbiotic and pathogenic viruses is fluid such that members of the healthy virome can become pathogens under changing conditions.


Assuntos
Interações Hospedeiro-Patógeno , Simbiose , Viroma/fisiologia , Bacteriófagos/classificação , Bacteriófagos/patogenicidade , Bacteriófagos/fisiologia , Humanos , Fenômenos Fisiológicos Virais , Replicação Viral , Vírus/classificação , Vírus/patogenicidade
11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33597254

Assuntos
Simbiose
12.
New Phytol ; 229(2): 1052-1066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866987

RESUMO

Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.


Assuntos
Proteínas do Movimento Viral em Plantas , Vírus de Plantas , Retículo Endoplasmático , Plasmodesmos
13.
Nat Microbiol ; 5(10): 1262-1270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690954

RESUMO

RNA viruses in aquatic environments remain poorly studied. Here, we analysed the RNA virome from approximately 10 l water from Yangshan Deep-Water Harbour near the Yangtze River estuary in China and identified more than 4,500 distinct RNA viruses, doubling the previously known set of viruses. Phylogenomic analysis identified several major lineages, roughly, at the taxonomic ranks of class, order and family. The 719-member-strong Yangshan virus assemblage is the sister clade to the expansive class Alsuviricetes and consists of viruses with simple genomes that typically encode only RNA-dependent RNA polymerase (RdRP), capping enzyme and capsid protein. Several clades within the Yangshan assemblage independently evolved domain permutation in the RdRP. Another previously unknown clade shares ancestry with Potyviridae, the largest known plant virus family. The 'Aquatic picorna-like viruses/Marnaviridae' clade was greatly expanded, with more than 800 added viruses. Several RdRP-linked protein domains not previously detected in any RNA viruses were identified, such as the small ubiquitin-like modifier (SUMO) domain, phospholipase A2 and PrsW-family protease domain. Multiple viruses utilize alternative genetic codes implying protist (especially ciliate) hosts. The results reveal a vast RNA virome that includes many previously unknown groups. However, phylogenetic analysis of the RdRPs supports the previously established five-branch structure of the RNA virus evolutionary tree, with no additional phyla.


Assuntos
Genoma Viral , Metagenoma , Metagenômica , Vírus de RNA/classificação , Vírus de RNA/genética , Sequência de Aminoácidos , Biodiversidade , China , Biologia Computacional/métodos , Evolução Molecular , Ordem dos Genes , Metagenômica/métodos , Filogenia , Proteínas Virais/química , Proteínas Virais/genética , Microbiologia da Água
14.
Nat Rev Microbiol ; 18(11): 661-670, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32665595

RESUMO

The last universal cellular ancestor (LUCA) is the most recent population of organisms from which all cellular life on Earth descends. The reconstruction of the genome and phenotype of the LUCA is a major challenge in evolutionary biology. Given that all life forms are associated with viruses and/or other mobile genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by projecting back in time using the extant distribution of viruses across the two primary domains of life, bacteria and archaea, and tracing the evolutionary histories of some key virus genes, we attempt a reconstruction of the LUCA virome. Even a conservative version of this reconstruction suggests a remarkably complex virome that already included the main groups of extant viruses of bacteria and archaea. We further present evidence of extensive virus evolution antedating the LUCA. The presence of a highly complex virome implies the substantial genomic and pan-genomic complexity of the LUCA itself.


Assuntos
Evolução Molecular , Genoma Viral/genética , Viroma/genética , Vírus , Archaea/virologia , Bactérias/virologia , Proteínas do Capsídeo , Proteínas Virais/química , Proteínas Virais/genética , Vírus/química , Vírus/genética , Vírus/ultraestrutura
15.
Annu Rev Phytopathol ; 58: 23-53, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32459570

RESUMO

Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.


Assuntos
Vírus de Plantas , Vírus de RNA , Filogenia , Plantas/virologia
17.
Microbiol Mol Biol Rev ; 84(2)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32132243

RESUMO

Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.


Assuntos
Evolução Molecular , Genoma Viral , Filogenia , Vírus/classificação , Replicação do DNA , Vírus de DNA/genética , Genes Virais , Vírus de RNA/genética , Fenômenos Fisiológicos Virais
18.
Nat Rev Microbiol ; 17(7): 449-458, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31142823

RESUMO

Viruses are ubiquitous parasites of cellular life and the most abundant biological entities on Earth. It is widely accepted that viruses are polyphyletic, but a consensus scenario for their ultimate origin is still lacking. Traditionally, three scenarios for the origin of viruses have been considered: descent from primordial, precellular genetic elements, reductive evolution from cellular ancestors and escape of genes from cellular hosts, achieving partial replicative autonomy and becoming parasitic genetic elements. These classical scenarios give different timelines for the origin(s) of viruses and do not explain the provenance of the two key functional modules that are responsible, respectively, for viral genome replication and virion morphogenesis. Here, we outline a 'chimeric' scenario under which different types of primordial, selfish replicons gave rise to viruses by recruiting host proteins for virion formation. We also propose that new groups of viruses have repeatedly emerged at all stages of the evolution of life, often through the displacement of ancestral structural and genome replication genes.


Assuntos
Evolução Biológica , Capsídeo/metabolismo , Interações entre Hospedeiro e Microrganismos , Vírus/crescimento & desenvolvimento , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...